Tag Archives: hologenome

Stress, Microbiome, Inflammation and the Pancreas & Liver

flow chart stress intestinal function inflammation

Sometimes things happen that seem to come out of nowhere. It happens to all of us, usually when we least expect it because we are busy taking care of others or life in general. So here’s a scenario: Imagine that one day your blood sugar suddenly skyrockets and your Medical physician informs you that your liver and pancreas are not functioning properly. What could cause this? Well, many things could, but the one thing in common is inflammation. If the pancreas is inflamed, the Islets of Langerhans sometimes stop producing insulin and blood sugar doesn’t get stored, so it jumps up. If the inflammation is early in life, the immune system may go to the point of forming antibodies to the Islets, destroying them and causing Type 1 diabetes. If the body becomes inflamed later in life, cells may not respond to insulin anymore, causing Type 2 diabetes. But if the pancreas is inflamed, it doesn’t work properly. The liver can be implicated too, as it stores extra energy (glucose) reserves for when you need them. Liver inflammation can also cause diabetes. While these changes are all known to occur in people that are obese and have an unhealthy diet, how is it possible for it to happen this quickly, and in someone who isn’t obese? The answer lies in the fact that the immune system is mostly controlled by our gut bacteria and GALT, or gut-associated lymphoid tissue, dendritic nerve endings, and other points of information exchange between the microbiome and the host immune system.

Research has shown that exposure to short-term social/emotional stress causes alteration of the gut microbiome. This altered microbiome in turn does not control the immune system approriately, resulting in increased systemic inflammation (which can make the social stress worse, as both the inflammation and the altered microbiome affect brain function and mood). See the illustration above, which is from my book The Symbiont Factor.

Another factor that can alter the microbiome and trigger widespread inflammation is short term dietary change, to a less beneficial diet. In research terminology, a diet that causes microbiome demise, inflammation and disease is called a Western Diet. It is used to produce a sick lab animal to study, and mimics what the average American consumer eats every day.

Sleep is absolutely necessary for a healthy microbiome, and disruptions of our circadian rhythms and sleep cycles has been shown to disrupt our microbiome and cause inflammation.

Exposure to air affects our microbiome too! Air is actually replete will huge numbers of human skin cells and bacteria from other people in the vicinity. The longer we are in a space with other people, the more we inhale parts of their microbiome combined with the microbiome of the space. These organisms then influence our own microbiome, so if the exposure was to unhealthy microbiomes, the result can be…inflammation once more.

Sometimes the scenario can revive imbalances and infections we’ve had before, such as chronic viral infections (shingles, for example, or herpes) or chronic bacterial infections such as Lyme disease-where the organism was in a dormant state due to good immune function-waiting for an opportunity.

Ok, so…can we picture a scenario where all of the above are combined? Stress, bad food, interrupted sleep with no real dark/light cycles, and lots of sick people/bad bacteria? Bingo-it’s the place where we send people to get well: a hospital.

What should we do to recover from this systemic inflammation?

  1. Regular sleep, hitting the bed and waking same time every day, preferably in a multiple of 90 minutes. So, 6 hours, 7.5 hours, 9 hours so that we don’t interrupt a sleep cycle. No lights, no devices at night. No bright little blue “charging” LEDs.
  2. Healthy food, and preferably some of it fermented. There is a great fermented oatmeal recipe earlier on this blog, and many areas have private individuals making fantastic fermented vegetables. Here in coastal Maine, “A Stone’s Throw to Health” is one such business, with handcrafted ferments by Sheila Perloff-Eddison.
  3. Avoid deep fried food, hydrogenated fats, sweets, gluten. Even if you’re not gluten sensitive, eating it when you’re inflamed raises the odds of you becoming gluten sensitive. No fast food. Real meat, vegetable, greens, fruit.
  4. Probiotic Bifidobacteria, in double the normal doses. Add prebiotic inulin, pectin, FOS, GOS supplements to help feed the newly introduced organisms.
  5. Curcumin is hugely effective for reducing inflammation, improving insulin sensitivity, healing liver and pancreas. Not turmeric, which is 5% curcumin, but 95% curcumin-the real stuff. I take 6-8 capsules a day, minimum, if I’m injured or inflamed. It works better than drugs-check out the Ghosh study in the bibliography below.
  6. Some other products, such as jerusalem artichokes/sunchokes, jicama, artichokes, asparagus, pomegranate, rhubarb, ginger have been shown to have fantastic prebiotic and anti-inflammatory benefits.
  7. Make a point of, several times per day, praying or meditating on peaceful/optimistic and loving thoughts while breathing deeply. The physiologic effects improve autonomic tone and gut function, helping to recolonize healthy bacteria while healing gut membranes.

 

Sources:

Fermented Vegetables: http://www.astonesthrowtohealth.com/

Curcumin: http://progressivelabs.com/product.php?productid=17110&cat=0&page=1

Inulin: http://www.amazon.com/Prebiotin-Prebiotic-Fiber-8-5-Powder/dp/B001RVFSFS/ref=sr_1_2_a_it?ie=UTF8&qid=1459361720&sr=8-2&keywords=prebiotic

For more info: http://www.amazon.com/Symbiont-Factor-Microbiome-Redefines-Humanity/dp/1500553948/

Fermented oatmeal recipe: https://thesymbiontfactorblog.com/2016/01/26/super-synbiotic-breakfast-improved/

 

Bibliography:

Rhubarb extract prevents hepatic inflammation induced by acute alcohol intake, an effect related to the modulation of the gut microbiota.

Neyrinck AM, Etxeberria U, Taminiau B, Daube G, Van Hul M, Everard A, Cani PD, Bindels LB, Delzenne NM.

Mol Nutr Food Res. 2016 Mar 18. doi: 10.1002/mnfr.201500899. [Epub ahead of print]

PMID:26990039

Combination with Red ginseng and Polygoni Multiflori ameliorates highfructose diet induced metabolic syndrome.

Kho MC, Lee YJ, Park JH, Cha JD, Choi KM, Kang DG, Lee HS.

BMC Complement Altern Med. 2016 Mar 9;16(1):98. doi: 10.1186/s12906-016-1063-7.

PMID:26961224

Free PMC Article

Chronic Psychological Stress Disrupted the Composition of the Murine Colonic Microbiota and Accelerated a Murine Model of Inflammatory Bowel Disease.

Watanabe Y, Arase S, Nagaoka N, Kawai M, Matsumoto S.

PLoS One. 2016 Mar 7;11(3):e0150559. doi: 10.1371/journal.pone.0150559. eCollection 2016.

PMID:26950850

Free PMC Article

Early Alterations in Glycemic Control and Pancreatic Endocrine Function in Nondiabetic Patients With Chronic Pancreatitis.

Lundberg R, Beilman GJ, Dunn TB, Pruett TL, Freeman ML, Ptacek PE, Berry KL, Robertson RP, Moran A, Bellin MD.

Pancreas. 2016 Apr;45(4):565-71. doi: 10.1097/MPA.0000000000000491.

PMID:26918872

Hepatoprotective Effect and Synergism of Bisdemethoycurcumin against MCD Diet-Induced Nonalcoholic Fatty Liver Disease in Mice.

Kim SB, Kang OH, Lee YS, Han SH, Ahn YS, Cha SW, Seo YS, Kong R, Kwon DY.

PLoS One. 2016 Feb 16;11(2):e0147745. doi: 10.1371/journal.pone.0147745. eCollection 2016.

PMID:26881746

Free PMC Article

Protective Role of Dietary Curcumin in the Prevention of the Oxidative Stress Induced by Chronic Alcohol with respect to Hepatic Injury and Antiatherogenic Markers.

Varatharajalu R, Garige M, Leckey LC, Reyes-Gordillo K, Shah R, Lakshman MR.

Oxid Med Cell Longev. 2016;2016:5017460. doi: 10.1155/2016/5017460. Epub 2016 Jan 5.

PMID:26881029

Free PMC Article

Targeting arachidonic acid pathway by natural products for cancer prevention and therapy.

Yarla NS, Bishayee A, Sethi G, Reddanna P, Kalle AM, Dhananjaya BL, Dowluru KS, Chintala R, Duddukuri GR.

Semin Cancer Biol. 2016 Feb 4. pii: S1044-579X(16)30003-7. doi: 10.1016/j.semcancer.2016.02.001. [Epub ahead of print] Review.

PMID:26853158

Preventive effect of curcumin on inflammation, oxidative stress and insulin resistance in high-fat fed obese rats.

Maithilikarpagaselvi N, Sridhar MG, Swaminathan RP, Sripradha R.

J Complement Integr Med. 2016 Feb 4. pii: /j/jcim.ahead-of-print/jcim-2015-0070/jcim-2015-0070.xml. doi: 10.1515/jcim-2015-0070. [Epub ahead of print]

PMID:26845728

Curcumin Attenuates Oxidative Stress and Activation of Redox-Sensitive Kinases in High Fructose- and High-Fat-Fed Male Wistar Rats.

Maithili Karpaga Selvi N, Sridhar MG, Swaminathan RP, Sripradha R.

Sci Pharm. 2014 Nov 4;83(1):159-75. doi: 10.3797/scipharm.1408-16. eCollection 2015.

PMID:26839808

Free PMC Article

Oral Probiotic VSL#3 Prevents Autoimmune Diabetes by Modulating Microbiota and Promoting Indoleamine 2,3-Dioxygenase-Enriched Tolerogenic Intestinal Environment.

Dolpady J, Sorini C, Di Pietro C, Cosorich I, Ferrarese R, Saita D, Clementi M, Canducci F, Falcone M.

J Diabetes Res. 2016;2016:7569431. doi: 10.1155/2016/7569431. Epub 2015 Dec 8.

PMID:26779542

Free PMC Article

Curcumin prevents paracetamol-induced liver mitochondrial alterations.

Granados-Castro LF, Rodríguez-Rangel DS, Fernández-Rojas B, León-Contreras JC, Hernández-Pando R, Medina-Campos ON, Eugenio-Pérez D, Pinzón E, Pedraza-Chaverri J.

J Pharm Pharmacol. 2016 Feb;68(2):245-56. doi: 10.1111/jphp.12501. Epub 2016 Jan 15.

PMID:26773315

Alternating or continuous exposure to cafeteria diet leads to similar shifts in gut microbiota compared to chow diet.

Kaakoush NO, Martire SI, Raipuria M, Mitchell HM, Nielsen S, Westbrook RF, Morris MJ.

Mol Nutr Food Res. 2016 Jan 14. doi: 10.1002/mnfr.201500815. [Epub ahead of print]

PMID:26767716

Curcumin prevents inflammatory response, oxidative stress and insulin resistance in high fructose fed male Wistar rats: Potential role of serine kinases.

Maithilikarpagaselvi N, Sridhar MG, Swaminathan RP, Zachariah B.

Chem Biol Interact. 2016 Jan 25;244:187-94. doi: 10.1016/j.cbi.2015.12.012. Epub 2015 Dec 20.

PMID:26713546

Curcumin protects against gallic acid-induced oxidative stress, suppression of glutathione antioxidant defenses, hepatic and renal damage in rats.

Abarikwu SO, Durojaiye M, Alabi A, Asonye B, Akiri O.

Ren Fail. 2016 Mar;38(2):321-9. doi: 10.3109/0886022X.2015.1127743. Epub 2015 Dec 27.

PMID:26707166

Curcumin upregulates Nrf2 nuclear translocation and protects rat hepatic stellate cells against oxidative stress.

Liu Z, Dou W, Zheng Y, Wen Q, Qin M, Wang X, Tang H, Zhang R, Lv D, Wang J, Zhao S.

Mol Med Rep. 2016 Feb;13(2):1717-24. doi: 10.3892/mmr.2015.4690. Epub 2015 Dec 17.

PMID:26676408

Curcumin Supplementation Decreases Intestinal Adiposity Accumulation, Serum Cholesterol Alterations, and Oxidative Stress in Ovariectomized Rats.

Morrone Mda S, Schnorr CE, Behr GA, Gasparotto J, Bortolin RC, da Boit Martinello K, Saldanha Henkin B, Rabello TK, Zanotto-Filho A, Gelain DP, Moreira JC.

Oxid Med Cell Longev. 2016;2016:5719291. doi: 10.1155/2016/5719291. Epub 2015 Nov 23.

PMID:26640615

Free PMC Article

Biological and therapeutic activities, and anticancer properties of curcumin.

Perrone D, Ardito F, Giannatempo G, Dioguardi M, Troiano G, Lo Russo L, DE Lillo A, Laino L, Lo Muzio L.

Exp Ther Med. 2015 Nov;10(5):1615-1623. Epub 2015 Sep 17.

PMID:26640527

Free PMC Article

Curcumin prevents the non-alcoholic fatty hepatitis via mitochondria protection and apoptosis reduction.

Wang L, Lv Y, Yao H, Yin L, Shang J.

Int J Clin Exp Pathol. 2015 Sep 1;8(9):11503-9. eCollection 2015.

PMID:26617882

Free PMC Article

Curcumin attenuates chronic ethanol-induced liver injury by inhibition of oxidative stress via mitogen-activated protein kinase/nuclear factor E2-related factor 2 pathway in mice.

Xiong ZE, Dong WG, Wang BY, Tong QY, Li ZY.

Pharmacogn Mag. 2015 Oct-Dec;11(44):707-15. doi: 10.4103/0973-1296.165556.

PMID:26600714

Free PMC Article

High Fat High Cholesterol Diet (Western Diet) Aggravates Atherosclerosis, Hyperglycemia and Renal Failure in Nephrectomized LDL Receptor Knockout Mice: Role of Intestine Derived Lipopolysaccharide.

Ghosh SS, Righi S, Krieg R, Kang L, Carl D, Wang J, Massey HD, Sica DA, Gehr TW, Ghosh S.

PLoS One. 2015 Nov 18;10(11):e0141109. doi: 10.1371/journal.pone.0141109. eCollection 2015.

PMID:26580567

Free PMC Article

Structural & functional consequences of chronic psychosocial stress on the microbiome & host.

Bharwani A, Mian MF, Foster JA, Surette MG, Bienenstock J, Forsythe P.

Psychoneuroendocrinology. 2016 Jan;63:217-27. doi: 10.1016/j.psyneuen.2015.10.001. Epub 2015 Oct 9.

PMID:26479188

T-Helper Cell-Mediated Islet Inflammation Contributes to β-Cell Dysfunction in Chronic Pancreatitis.

Talukdar R, Sasikala M, Pavan Kumar P, Rao GV, Pradeep R, Reddy DN.

Pancreas. 2016 Mar;45(3):434-42. doi: 10.1097/MPA.0000000000000479.

PMID:26474432

Curcumin Induces Pancreatic Adenocarcinoma Cell Death Via Reduction of the Inhibitors of Apoptosis.

Díaz Osterman CJ, Gonda A, Stiff T, Sigaran U, Valenzuela MM, Ferguson Bennit HR, Moyron RB, Khan S, Wall NR.

Pancreas. 2016 Jan;45(1):101-9. doi: 10.1097/MPA.0000000000000411.

PMID:26348467

Curcumin inhibits lung cancer invasion and metastasis by attenuating GLUT1/MT1-MMP/MMP2 pathway.

Liao H, Wang Z, Deng Z, Ren H, Li X.

Int J Clin Exp Med. 2015 Jun 15;8(6):8948-57. eCollection 2015.

PMID:26309547

Free PMC Article

Curcumin attenuates ethanol-induced hepatic steatosis through modulating Nrf2/FXR signaling in hepatocytes.

Lu C, Zhang F, Xu W, Wu X, Lian N, Jin H, Chen Q, Chen L, Shao J, Wu L, Lu Y, Zheng S.

IUBMB Life. 2015 Aug;67(8):645-58. doi: 10.1002/iub.1409. Epub 2015 Aug 25.

PMID:26305715

Curcumin pretreatment mediates antidiabetogenesis via functional regulation of adrenergic receptor subtypes in the pancreas of multiple low-dose streptozotocin-induced diabetic rats.

Naijil G, Anju TR, Jayanarayanan S, Paulose CS.

Nutr Res. 2015 Sep;35(9):823-33. doi: 10.1016/j.nutres.2015.06.011. Epub 2015 Jul 2.

PMID:26255758

Pancreatic β-Cells Limit Autoimmune Diabetes via an Immunoregulatory Antimicrobial Peptide Expressed under the Influence of the Gut Microbiota.

Sun J, Furio L, Mecheri R, van der Does AM, Lundeberg E, Saveanu L, Chen Y, van Endert P, Agerberth B, Diana J.

Immunity. 2015 Aug 18;43(2):304-17. doi: 10.1016/j.immuni.2015.07.013. Epub 2015 Aug 4.

PMID:26253786

iNKT and MAIT Cell Alterations in Diabetes.

Magalhaes I, Kiaf B, Lehuen A.

Front Immunol. 2015 Jul 2;6:341. doi: 10.3389/fimmu.2015.00341. eCollection 2015. Review.

PMID:26191063

Free PMC Article

Innate inflammation in type 1 diabetes.

Cabrera SM, Henschel AM, Hessner MJ.

Transl Res. 2016 Jan;167(1):214-27. doi: 10.1016/j.trsl.2015.04.011. Epub 2015 Apr 29. Review.

PMID:25980926

The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes.

Kostic AD, Gevers D, Siljander H, Vatanen T, Hyötyläinen T, Hämäläinen AM, Peet A, Tillmann V, Pöhö P, Mattila I, Lähdesmäki H, Franzosa EA, Vaarala O, de Goffau M, Harmsen H, Ilonen J, Virtanen SM, Clish CB, Orešič M, Huttenhower C, Knip M; DIABIMMUNE Study Group, Xavier RJ.

Cell Host Microbe. 2015 Feb 11;17(2):260-73. doi: 10.1016/j.chom.2015.01.001. Epub 2015 Feb 5.

PMID:25662751

Free PMC Article

The impact of diet and lifestyle on gut microbiota and human health.

Conlon MA, Bird AR.

Nutrients. 2014 Dec 24;7(1):17-44. doi: 10.3390/nu7010017. Review.

PMID:25545101

Free PMC Article

Curcumin enhances recovery of pancreatic islets from cellular stress induced inflammation and apoptosis in diabetic rats.

Rashid K, Sil PC.

Toxicol Appl Pharmacol. 2015 Feb 1;282(3):297-310. doi: 10.1016/j.taap.2014.12.003. Epub 2014 Dec 23.

PMID:25541178

Curcumin ameliorates streptozotocin-induced liver damage through modulation of endoplasmic reticulum stress-mediated apoptosis in diabetic rats.

Afrin R, Arumugam S, Soetikno V, Thandavarayan RA, Pitchaimani V, Karuppagounder V, Sreedhar R, Harima M, Suzuki H, Miyashita S, Nomoto M, Suzuki K, Watanabe K.

Free Radic Res. 2015 Mar;49(3):279-89. doi: 10.3109/10715762.2014.999674. Epub 2015 Jan 28.

PMID:25536420

Free PMC Article

Curcumin improves high glucose-induced INS-1 cell insulin resistance via activation of insulin signaling.

Song Z, Wang H, Zhu L, Han M, Gao Y, Du Y, Wen Y.

Food Funct. 2015 Feb;6(2):461-9. doi: 10.1039/c4fo00608a.

PMID:25474544

Curcumin ameliorates testicular damage in diabetic rats by suppressing cellular stress-mediated mitochondria and endoplasmic reticulum-dependent apoptotic death.

Rashid K, Sil PC.

Biochim Biophys Acta. 2015 Jan;1852(1):70-82. doi: 10.1016/j.bbadis.2014.11.007. Epub 2014 Nov 11.

PMID:25446996

Free Article

The gut microbiota modulates glycaemic control and serum metabolite profiles in non-obese diabetic mice.

Greiner TU, Hyötyläinen T, Knip M, Bäckhed F, Orešič M.

PLoS One. 2014 Nov 12;9(11):e110359. doi: 10.1371/journal.pone.0110359. eCollection 2014.

PMID:25390735

Free PMC Article

Resveratrol and curcumin enhance pancreatic β-cell function by inhibiting phosphodiesterase activity.

Rouse M, Younès A, Egan JM.

J Endocrinol. 2014 Nov;223(2):107-17. doi: 10.1530/JOE-14-0335.

PMID:25297556

Free PMC Article

Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota.

Galley JD, Nelson MC, Yu Z, Dowd SE, Walter J, Kumar PS, Lyte M, Bailey MT.

BMC Microbiol. 2014 Jul 15;14:189. doi: 10.1186/1471-2180-14-189.

PMID:25028050

Free PMC Article

Gut microbiota, probiotics and diabetes.

Gomes AC, Bueno AA, de Souza RG, Mota JF.

Nutr J. 2014 Jun 17;13:60. doi: 10.1186/1475-2891-13-60. Review.

PMID:24939063

Free PMC Article

Circadian disorganization alters intestinal microbiota.

Voigt RM, Forsyth CB, Green SJ, Mutlu E, Engen P, Vitaterna MH, Turek FW, Keshavarzian A.

PLoS One. 2014 May 21;9(5):e97500. doi: 10.1371/journal.pone.0097500. eCollection 2014.

PMID:24848969

Free PMC Article

A maternal gluten-free diet reduces inflammation and diabetes incidence in the offspring of NOD mice.

Hansen CH, Krych L, Buschard K, Metzdorff SB, Nellemann C, Hansen LH, Nielsen DS, Frøkiær H, Skov S, Hansen AK.

Diabetes. 2014 Aug;63(8):2821-32. doi: 10.2337/db13-1612. Epub 2014 Apr 2.

PMID:24696449

Free Article

Impact of stressor exposure on the interplay between commensal microbiota and host inflammation.

Galley JD, Bailey MT.

Gut Microbes. 2014 May-Jun;5(3):390-6. doi: 10.4161/gmic.28683. Epub 2014 Apr 1. Review.

PMID:24690880

Free PMC Article

Curcumin inhibits tumor growth and angiogenesis in an orthotopic mouse model of human pancreatic cancer.

Bimonte S, Barbieri A, Palma G, Luciano A, Rea D, Arra C.

Biomed Res Int. 2013;2013:810423. doi: 10.1155/2013/810423. Epub 2013 Nov 10.

PMID:24324975

Free PMC Article

Human intestinal microbiota and type 1 diabetes.

Vaarala O.

Curr Diab Rep. 2013 Oct;13(5):601-7. doi: 10.1007/s11892-013-0409-5. Review.

PMID:23934614

Curcumin attenuates diet-induced hepatic steatosis by activating AMP-activated protein kinase.

Um MY, Hwang KH, Ahn J, Ha TY.

Basic Clin Pharmacol Toxicol. 2013 Sep;113(3):152-7. doi: 10.1111/bcpt.12076. Epub 2013 May

PMID:23574662

Free Article

Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation.

Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M.

Brain Behav Immun. 2011 Mar;25(3):397-407. doi: 10.1016/j.bbi.2010.10.023. Epub 2010 Oct 30.

PMID:21040780

Free PMC Article

Administration of different Lactobacillus strains in fermented oatmeal soup: in vivo colonization of human intestinal mucosa and effect on the indigenous flora.

Johansson ML, Molin G, Jeppsson B, Nobaek S, Ahrné S, Bengmark S.

Appl Environ Microbiol. 1993 Jan;59(1):15-20.

PMID:8439146

Free PMC Article

Effect of fermented oatmeal soup on the cholesterol level and the Lactobacillus colonization of rat intestinal mucosa.

Molin G, Andersson R, Ahrné S, Lönner C, Marklinder I, Johansson ML, Jeppsson B, Bengmark S.

Antonie Van Leeuwenhoek. 1992 Apr;61(3):167-73.

 

Mood: Does it affect gut symbiont health and intestinal function?

flow chart stress intestinal function inflammation

What are the causes of dysbiosis and resultant dysfunction/disease? One cause that seems to be greatly underestimated may be simply our mood! Human beings, having been gifted with large frontal lobes, are capable of experiencing and expressing a variety of moods. Our bodies respond to these moods with different functional states, some of which have been categorized. These are “fight or flight (or sometimes, fight/flee/fortify)” or “wine and dine”.  There are many more physiological functional arousal states that we could elaborate on, but many of them could make this blog post NSFW. We’ll just assume that your imagination can fill in the blanks with how the body responds to the mind! With the brain-gut connection in mind, and being also cognizant that it’s a two-way street since the gut influences the brain, what would be the influence of stress? One that comes to mind right away is a reduction in gut motility. This changes the environment in which the microbiome exists, and will change the demographics of the microorganisms. What about the effects of peristalsis on the small intestine? If there is less peristalsis, wouldn’t it make it easier for colonic organisms to migrate to the small intestine? If transit times increase, different stages of food digestion could release different nutrients, feeding different organisms. When do we cross from fermentative to putrefactive dominance? Using one of the concepts in The Symbiont Factor, this two-way function of gut/brain/gut axis can cause a positive feedback loop. If gut organisms that flourish during emotional stress can also alter neurotransmitter function at the brain, wouldn’t that predispose the brain to perceive stress following stressful events? What if that is why sometimes after a stressful day we just have more stress, no matter what happens? It is as if our very perception of our environment is vulnerable to plasticity. If this is allowed to happen without our conscious intervention (things like deciding to meditate or do some yoga even though you’re angry) the combination of evoked brain plasticity with gut symbiont evolution could be what makes it hard to shake off stress! Ironically, this same plasticity is probably an evolutionary advantage, allowing genetic selection of the microbiome on an ongoing real-time basis to adapt to circumstances. The problem is that our modern circumstances provide constant chemical and emotional pressure to this system, resulting in “learned dysfunction” of both the gut and the brain!  This highlights the importance of “mental housekeeping” and lifestyle choices in determining our “perceptual future”. If you don’t want the world to seem as stressful, start taking care of mind, body, and symbiont health!

The Symbiont Factor is now a paperback, available on Amazon!

After a year and a half of having a second job as a new author, my first book is finally available in print! A comprehensive, thoroughly referenced guide to how our gut bacteria influence physical and mental health: The Symbiont Factor is now available on Amazon as a paperback! If you ever wondered if and why probiotics are healthy you should read this book. Please share with your contacts 🙂     http://tinyurl.com/pe2g4xt

Ebola and the Microbiome-Facts You Need to Know!

In light of the most recent microbial scare, the Ebola virus outbreak in Africa which threatens to spread to the United States, I thought that perhaps it would be interesting to research and review some potential connections to the microbiome. What do our gut bacteria have to do with Ebola? Read on to find out!

The first issue to consider is susceptibility. Are some people resistant? This is not readily available knowledge, as there is no way to conduct ethical research with a virus boasting a 90% mortality. However, it has been researched with animals-and some animals are resistant when others are susceptible. The difference between the two appears to be reduced levels of circulating B and T cells, a part of the immune system that builds antibody responses to pathogens. (Chepurnov)

A second issue is the difference in mortality between survivors and those who perished from the disease. What has been found (in humans this time) is that those who succumbed had depressed levels of CD3+, CD4+ and CD8+ lymphocytes and greatly elevated inflammation levels. The inflammation was termed a “cytokine storm” due to the activation of the cytokine system that causes the inflammatory cascade. (Wauquier)

Is there a connection between the immune system function and the microbiome? Yes, there is such a connection, and it is well documented in The Symbiont Factor. Deficiency of gut bacteria causes depression in the immune components involved, resulting in depressed levels described above as causing increased vulnerability to the Ebola virus (Huang, Chung). Adding probiotics helps to stimulate the development of the CD4+ and CD8+ immune components important for resistance (Qadis, Palomar). Antibiotics that disrupt gut bacteria and cause dysbiosis can result in greatly elevated inflammatory response (Bercik).

How did the Ebola (and HIV) viruses begin to affect humans, instead of remaining diseases of animals? One current theory that is gaining momentum has to do with our micro-microbiome. Most of the microbiome discussed in The Symbiont Factor is bacterial, but humans can also have viral microbiomes. Some viruses exist within us and serve useful purposes! One such virus is a “primate T-cell retrovirus” that occurs only in areas that have had high levels of malaria for many generations. This virus elevates levels of T-cells that combat malaria, providing greater resistance to malaria. The use of anti-malarial drugs has caused development of drug resistance in this virus, also providing a pathway for the Ebola and HIV viruses to cross species barriers and infect humans. So, it is possible that in effect, we caused the Ebola and HIV problem. (Parris)

What does this mean in the big picture of things? Encouraging innate immunity is always safer than resorting to drugs, particularly as a preventive measure. Building up your microbiome so that your immune system is in tip-top shape may actually reduce the odds of contracting the infection if exposed to the pathogenic virus. More reasons to learn about The Symbiont Factor that keeps our body and mind at its best!

Recommended Reading:

The Symbiont Factor: http://amzn.to/1jz3kPt

 

References:

http://www.ncbi.nlm.nih.gov/pubmed/12152882

http://www.ncbi.nlm.nih.gov/pubmed/20957152

http://www.ncbi.nlm.nih.gov/pubmed/16290233

http://www.ncbi.nlm.nih.gov/pubmed/24131856

http://www.ncbi.nlm.nih.gov/pubmed/24016865

http://www.ncbi.nlm.nih.gov/pubmed/22726443

http://www.ncbi.nlm.nih.gov/pubmed/24997039

http://www.ncbi.nlm.nih.gov/pubmed/16893612

 

A Good Guide to Breathing Exercises to Help your Gut Bacteria

In The Symbiont Factor (http://amzn.to/1jz3kPt), I explain that one of the most important variables that we can influence to improve our gut bacteria is autonomic tone. When we are stressed, we become sympathetic (think “fight or flight”) dominant and this functional pattern inhibits digestion and gut mobility. This inhibition is also very harmful to beneficial gut bacteria! So, what can be done short-term to reverse this pattern? Breathing exercises. When under stress, most people suppress their breathing, contributing to sympathetic autonomic tone. When you take deep breaths instead, it stimulates your parasympathetic system, and this is the system that makes your gut function improve. Gut bacteria thrive in this functional pattern!  Now the only question is how to learn to improve breathing dynamics and build a “better-breathing” habit. One resource that I found tremendously helpful in learning this came from one of the sports I participate in: Freediving.  There is a great book called Breatheology, written by Stig Severinsen, which deals with specifically that: how to improve our breathing. You can find the book here: http://amzn.to/1nQYwAr. FYI-as I’m in Arkansas, I earn nothing from that link/referral; I’m listing it purely because I think it is that good! Of course, it makes a nice complement to the book I wrote…

How Women can Reduce their Susceptibility to Sexually Transmitted Diseases, Including HIV Infection!

Did you know that a woman’s microbiome, her resident population of symbiont bacteria, plays a critical role in her susceptibility to sexually transmitted diseases, including HIV infection? How could bacteria protect a person from disease? If you would like answers to questions like this one, check out my newly released book, The Symbiont Factor. Find it here: http://amzn.to/1jz3kPt

The Symbiont Factor is now Published!! Live on Amazon!

Today is the day I finally got to click on the “submit” button and make my book available on Amazon. After a year of hard work writing and making edit corrections, it’s done!  A print copy will be available soon-for now only the e-book version is available.

Here is the link to the book on Amazon: http://amzn.to/1jz3kPt