Tag Archives: evolution

The Brain as a Puppet: Gut Bacterial Control of Human Development and Behavior

Human intelligence brain medical symbol represented by a close up of active neurons and organ cell activity related to neurotransmitters showing intelligence with memory and healthy cognitive thinking activity.

Human intelligence brain medical symbol represented by a close up of active neurons and organ cell activity related to neurotransmitters showing intelligence with memory and healthy cognitive thinking activity.

One of the most fascinating discoveries of the last decade is the extent of influence that our bacterial microbiome has on our brain. We are really quite used to thinking of “ourselves” as a singular identity and yet our very mind may be more of a chorus than a solo. Trillions of bacteria all compete to have their needs met and their voice heard, and all of them have the ability to alter the very function of our brain at the most fundamental level. Several research papers have documented this (see references below in case you feel I’m off my rocker for saying some of the things I’m going to say 🙂

Today’s researchers are examining the many ways that gut bacteria can communicate with the human brain, and have found many pathways. The symbionts can alter the sensitivity of our neurotransmitter receptors, can release molecules that mimic neurotransmitters, produce neurotransmitters and release them into blood circulation, inflict pain or stimulate pleasure. What is the motive and why would they do this? How did bacteria learn Pavlovian training and use it to manipulate our mood, behavior and activity? The answer goes back quite far, but comes down to one thing: survival. From the beginning of evolution, bacteria have influenced the development of the multicellular organism. In many ways, you could look at bacteria as the most basic unit of life although this is generally a title attributed to the cell. Cells themselves are composed of structures that may have originated as bacteria that learned/evolved cooperative relationships. Today’s robotics researchers are studying spontaneous collective functioning as well, a parallel interest of mine. We now are fairly certain that gut bacterial symbionts not only guide the development of the human brain after birth, but influence its development before birth as well. To take that thought a step further, previous generations of symbionts have guided and facilitated the evolution of the human brain itself. Their genetic reservoir of DNA “data” is orders of magnitude greater than that of the human host, and has the ability to evolve and adapt on-the-fly during a lifetime. This gives the potential for intragenerational evolution as well as intergenerational, allowing us to evolve a bit during our lifetime and then pass this on to our children (unless they are born by caesarian section or blasted with antibiotics and vaccinations at a young age, but…that is the subject of other posts!) During our lifetime, from our earliest moments, our symbiont organisms are constantly tweaking our behavior and senses to suit their needs. In a way, we are the machine that permits them to live as a multicellular organism in a far more advanced manner, and in a world that many of them cannot survive in without us. It’s as if we built a gigantic robot that could house the entire human population (except, well, there are more gut bacteria in one human than there are humans on the planet) and used this robot to live in places that we normally could not survive in. We would certainly guide the robot to find foods that we can benefit from and do things that aid our survival. Gut bacteria do exactly that, and very elegantly. It isn’t coincidence that obligate anaerobes cause us to be stressed, which makes us breathe shallowly, tense up our muscles so they burn up oxygen, and even begin to develop apnea during the daytime and at night. What is the result? less oxygen in the gut, and that is what an obligate anaerobe benefits from. Our eating behavior is controlled by gut symbionts, to the point that some can inflict pain directly if we don’t eat something they need or trigger euphoric feeling when we give in and eat what they need. This is the reason that “diets” are so challenging, and particularly so for the obese individual-we are Pavlov’s dog, and the trainer has a cattle prod in one hand and a direct brain pleasure stimulation in the other. What will be your choice today? Yes, we can overcome that and eat a diet of “our” choosing, but only successfully after that diet and behavior changes result in changes to the microbiome. You see, once the microbiome is fed a certain way, the organisms that survive on that diet are the ones that become dominant. You can “starve out” harmful/nonbeneficial organisms, but it isn’t easy or pleasant. During a recent podcast interview with the entertaining and brilliant Clint Paddison (The Paddison Program for Rheumatoid Arthritis) he explained to me that fasting is a primary step in recovery/healing from RA. So, you see, we are as much the puppet as the master-it’s a two way street and while the host influences the symbionts, it works both ways. Symbionts can change our very perception of our world, altering our senses to guide our behavior to their benefit.

Ok, so with these thoughts in “mind” consider what the true effect of our diet is. Every single thing you eat and drink or even breathe alters symbiont bacteria to favor those that thrive on the substances in question. Eat a lot of fast “food”? You’ve selectively feeding the organisms that thrive on that. The problem is that apparently most of them are not beneficial to host health! We should also consider that all of these changes to gut bacteria as a result of our eating/drinking/breathing have consequences to our mental function. Everything from mental clarity, intelligence, emotional stability, personality-our very potential as human beings-is influenced by the bacteria that live in our gut. So which do you want to feed, the ones that may make you feel ill mentally and physically or the ones that could help you reach your true potential and live as long and healthy a life as possible?

If you’re intrigued by this discussion even a bit, you should consider reading the reference articles below. If you’d like to understand the subject better but want to read it in English and not research-ese, then please read my book, The Symbiont Factor. You can find it on Amazon as an e-book or paperback at the following link: http://tinyurl.com/p7mx6hh

References:

http://www.ncbi.nlm.nih.gov/pubmed/25401092

http://www.ncbi.nlm.nih.gov/pubmed/25772005

http://www.ncbi.nlm.nih.gov/pubmed/25103109

http://www.ncbi.nlm.nih.gov/pubmed/25974299

Symbiotic Gut Bacteria and The Meaning of Life. How Does it Feel to be 1% Human?

cropped-cover08.jpg
The last decade of research has advanced the understanding of life itself to such a degree that our definitions of “life” must now be adjusted. Until now, you may have regarded yourself as a singular entity; a “human being,” a “person” or just “me.” All of these terms indicate a belief system grounded in what is now an outdated concept. What if we were actually a cooperative group of organisms existing together for mutual benefit? Trillions of organisms, all sharing physical space and each contributing to the functioning of the whole. What if even our very consciousness were not a singular thing or the result of one personality, but more of a democratic/summative system or even a type of hive consciousness? All of these are functional realities to one extent or another. Oh, and one more thing…those human cells? They are in the minority and are outnumbered at least 10:1. Well, you might be thinking, a human being is defined by a specific genetic code, 23 pairs of chromosomes, a little over 21,000 genes that code for everything we are, right? Not so fast! Genes do encode for the protein molecules that carry out life functions, but if a person were to develop with only those 21,000 genes the brain, nervous system, immune system, endocrine and digestive systems would not develop or function normally at all. So where does all the other information come from?

“We” are an organism that includes several trillion symbiont organisms that all contribute genes. In fact, looking at a person from head to toe genetically reveals that the human genes are only 1/100th, or 1 percent, of the genes present. The majority of the remaining genome is bacterial in origin. We are only 1% or less human from a genetic standpoint! Scientists and researchers now know that the human body depends on this bacterial genetic reservoir of information for normal development and function. The human immune system, for example, is cultivated by the bacteria and “taught” how to function, what to kill and what to tolerate. Without this ancient genetic wisdom (bacteria have existed for an estimated 2 billion years) the human immune system does not function normally. Our brain is no different; without bacterial symbiont assistance the human brain is emotionally and functionally unstable. The result is an inflamed brain, anxiety and depression or schizophrenia, and an increased likelyhood of neurodegenerative diseases such as Parkinson’s, Alzheimer’s, or neuroimmune conditions such as Multiple Sclerosis. The digestive tract would not function normally either! Even our mind, that last refuge of a singular “self,” is not the result of a singular organism’s activities. Dominant colonies of bacteria wield significant influence on our mood, decision making and basic personality. Our appetite for specific food items as well as our overall appetite is heavily influenced by gut bacteria. Neurotransmitters that determine mood are both produced and consumed by the gut bacteria, exerting influence over mood. Neurotransmitter receptor sites in various specific areas of the human brain are sensitized or desensitized by symbiont bacteria. The result is a distinctly different emotional profile and personality! It is truly the result of the interactions of many organisms.
Our human parts in turn “farm” these bacterial colonies to keep them viable and performing their needed tasks.

The terms that have been coined for these concepts refer to “us” as Holobionts-a host plus its symbionts form the organism we call “human.” The total gene pool within the holobiont is called the Hologenome. All other eukaryotic life is thought to exist on the same principle of cooperative function between host and symbionts. The bacterial symbionts are capable of influencing mate choice, reproductive success and driving speciation to create new species from existing ones (really.)

After re-reading the previous discussion, you might be incredulous that life itself has been essentially redefined, and yet it did not really result in significant changes in healthcare practices. This is perhaps the most promising yet overlooked, proven yet controversial new development in decades. Healthcare is replete with legions of “singular organism, flat-earth-society” members who are slow to accept this new concept despite its promise of more effective interventions. As examples of the conflicts in logic that result, consider the following questions-each of which may be the subject of another blog post and are written of in The Symbiont Factor.

-If the body is dependent on symbiont bacteria for normal function, what is the result of taking antibiotics?
-If antibiotics are added to our food, what is the effect on our own personal hologenome?
-If food is routinely disinfected, what is the effect on hologenomic diversity?
-What are the long-term consequences of bacteria sharing plasmids (DNA fragments) that code for antibiotic resistance?
-If symbiont bacteria maintain immune system function, why do we kill them in cases of infection or cancer, when the immune system is needed the most?
-If so much physical and mental function depend on gut bacteria, why do we not evaluate the gut bacteria when something seems physically or mentally dysfunctional?
-Where do all of these symbiont bacteria come from in the environment?
-What is the effect of chemical environmental pollution on the potential microbiome?
-How does nutrition affect their population demographics?
-If two people have differing microbiomes, would a given medication affect them differently?
-Do different birthing and childcare practices affect the hologenomic outcome?
-If the bacterial symbionts have such an influence on human emotion and personality, why is this not addressed in psychology and psychiatry practice?
-How does being a holobiont with such a diverse colony of bacteria provide an evolutionary or competitive advantage?

As we move forward into the 21st century, we must strive to add holobiont concepts to the practice of healthcare and teach individuals why “taking care of yourself” might need to become “taking care of each other.” Perhaps better pollution control, for example, would be more meaningful if people understood that it isn’t only to save some small toad that lives far away, but also to save the bacterial diversity that our future depends on. Perhaps parenting practices would mean more when the importance of imparting a beneficial microbiome/hologenome to our children is better understood. These concepts form the basis for The Symbiont Factor, referenced with more than 1300 peer-reviewed research papers and due to be published by 15 June 2014.