Tag Archives: bifidobacterium

BCAA Branched Chain Amino Acids and how they boost Bifidobacterium and Akkermansia

Branched Chain Amino Acids, BCAA’s, are a common addition to the diet for bodybuilders and athletes. Here’s a new research study, published this month, that shows BCAA’s help change your gut bacteria. Specifically, the encourage more Bifidobacteria (which boosts immune function but lowers inflammation) and Akkermansia (which helps build lean muscle mass and reduce fat). As there is much research now connecting aging with inflammation, even calling it “inflammaging”, these are both great things. It’s also somewhat of a departure from the thought of using probiotics and prebiotics to modulate the gut bacteria, adding amino acids to our microbiome toolbox!

http://www.ncbi.nlm.nih.gov/pubmed/27539648

Bifidobacterium breve in premature infants…Really no benefit?

2baby newborn b

It’s early morning on the Maine coast, and as I do my usual “thing” and look at my social media feeds I see a pattern on Twitter: dozens of people have either written about or retweeted references to a Lancet study showing “no benefit for Bifidobacterium breve in premature infants”. Well, that sounded unlikely to me, so I started to drill deeper into the information. First, it is important to state that several prior studies have found that Bifido does indeed help; a review of the studies by Baucells had the same conclusion. There is a very obvious major problem with the logic behind the study saying there is no benefit, and I’m going to point it out in a moment. Let’s look at a bit of background for anyone not familiar with the issues discussed.

Our bodies are colonized by trillions of symbiotic bacteria, and they help to build our immune system and keep our gut healthy (along with many other critical functions). Premature infants face several challenges, including necrotizing enterocolitis-an inflammatory infection of the intestines that is often fatal. The colonization of the intestines with symbiotic bacteria begins prior to birth, but really progresses after normal birth because of ingestion of a starter culture of vaginal bacteria and breastfeeding, which provides needed prebiotics (substances that feed beneficial bacteria) present in breast milk. Not breastfeeding is a risk factor for an abnormal gut bacterial population, as is birth by c-section, as both rob the infant of the mother’s bacteria. Premature infants often face both challenges.

The research study in question examined the use of a strain of Bifidobacterium breve in premature infants to reduce the incidence of necrotizing enterocolitis. The probiotic was added to dilute elemental infant formula, with the control group receiving only the formula. There was no benefit found to the introduction of B. breve in this manner. This finding has been trumpeted across the Twitterverse since the study was published, usually with the title just saying there is no benefit.

The first issue is that infant formula has already been shown to be inferior to human breast milk for the prevention of necrotizing enterocolitis (Hay). Why use infant formula instead of human breast milk? Apparently this is quite common, which astounds me. With the hundreds of thousands of dollars in equipment and training involved in premature infant care, human breast milk is not routinely used although it reduces fatal infections?  I was actually a little shocked by this, but considering the anti-breastfeeding bias that still exists for some reason, it may not be so surprising. Corporate influence on the birth process has long promoted formula over breast, against all scientific logic.

The second issue is related to the first. One of the basic foundation concepts of probiotic interventions that is familiar to any health practitioner versed in symbiont-based health strategies is “Seed and Feed”. Adding beneficial organisms and then not feeding them does not work as well as nourishing them after their introduction. Sounds simple enough, right? Studies have already been done showing that formula and breast milk are quite different in their effect on symbiont organisms (Liu) with breastmilk being superior. Another study (Repa) showed that probiotics prevented necrotizing enterocolitis in infants fed breastmilk but not in those fed formula. Another study (Yao) found that adding Oligosaccharides (a prebiotic) to infant formula raised Bifidobacterium levels in those infants.

So, in summary, this study found that the introduction of Bifidobacterium probiotic to a premature baby receiving formula of no nutritional benefit to the organism was of no benefit. And this is somehow considered newsworthy? The concepts behind “seed and feed” are not revolutionary, complex nor undiscovered. It isn’t rocket science; if you don’t feed the organisms they do not survive. Yet, the articles referring to the study simply state “Bifidobacterium of no use in premature infants”…..which is simply not true, even if it is “on the Interwebs”.

References:

The Symbiont Factor: http://tinyurl.com/h2m5lq8

1.

Bifidobacterium breve BBG-001 in very preterm infants: a randomised controlled phase 3 trial.

Costeloe K, Hardy P, Juszczak E, Wilks M, Millar MR; Probiotics in Preterm Infants Study Collaborative Group.

Lancet. 2015 Nov 25. doi:pii: S0140-6736(15)01027-2. 10.1016/S0140-6736(15)01027-2. [Epub ahead of print]

 
2.

[Probiotic associations in the prevention of necrotising enterocolitis and the reduction of late-onset sepsis and neonatal mortality in preterm infants under 1,500g: A systematic review].

Baucells BJ, Mercadal Hally M, Álvarez Sánchez AT, Figueras Aloy J.

An Pediatr (Barc). 2015 Nov 20. doi:pii: S1695-4033(15). 10.1016/j.anpedi.2015.07.038. [Epub ahead of print] Spanish.

PubMed [citation]
3.

Effects of term infant formulas containing high sn-2 palmitate with and without oligofructose on stool composition, stool characteristics, and bifidogenicity.

Yao M, Lien EL, Capeding MR, Fitzgerald M, Ramanujam K, Yuhas R, Northington R, Lebumfacil J, Wang L, DeRusso PA.

J Pediatr Gastroenterol Nutr. 2014 Oct;59(4):440-8. doi: 10.1097/MPG.0000000000000443.

 
4.

Probiotics (Lactobacillus acidophilus and Bifidobacterium bifidum) prevent NEC in VLBW infants fed breast milk but not formula.

Repa A, Thanhaeuser M, Endress D, Weber M, Kreissl A, Binder C, Berger A, Haiden N.

Pediatr Res. 2015 Feb;77(2):381-8. doi: 10.1038/pr.2014.192. Epub 2014 Nov 25.

5.

Human Breast Milk and Infant Formulas Differentially Modify the Intestinal Microbiota in Human Infants and Host Physiology in Rats.

Liu Z, Roy NC, Guo Y, Jia H, Ryan L, Samuelsson L, Thomas A, Plowman J, Clerens S, Day L, Young W.

J Nutr. 2015 Dec 16. doi:pii: jn223552. [Epub ahead of print]

 
6.

Strategies for Feeding the Preterm Infant.

Hay WW Jr.

Neonatology. 2008/01/01 00:00; 94(4): 245-254

PMC [article]

 

 

 

ADHD and the Microbiome: Any useful connections?

ADHD

Life sometimes keeps us quite busy, doesn’t it? I apologize to you, my readers, for the scarce blog posts. I’ve been in the process of pulling off an epic home move of about 1700 miles! So, I write this post while in a campground in Lamoine, Maine USA where I’ve been hunting up a new home for my family and I.

I did quite a bit of research reading about ADHD recently, and thought I would share a few thoughts about it.  Most of these thoughts are summarized in the flow chart drawing I created; refer to it when reading this blog post and you’ll see what I mean. What can be learned from a simple uBiome stool sample that can help with ADHD? Well, it turns out that there is quite a bit to look at there! As usual, this isn’t meant to replace your physician’s advice, and it is an example-which may not exactly describe your situation. You should consider using uBiome to run your (or your child’s) sample to see what your particular situation consists of.

The first thing to consider is the imbalance that frequently occurs in a microbiome. You see, it isn’t just about how many species of bacteria live in your gut, it is also about the relative numbers of those species. uBiome, after processing your sample, shows this in the simplest way by clicking on Taxonomy tree. In this format, the larger circles indicate larger populations while the smaller ones indicate, well, smaller. Clicking on each allows one to expand the data down from the phylum level all the way down to the genus level (remember, all life is cataloged by Kingdom, Phylum, Class, Order, Family, Genus, Species. We usually use Genus, Species to identify organisms, such as Homo sapiens or Helicobacter pylori.) When expanding these circles, often there is an obvious imbalance. At this point, I’m going to share some very specific information, and some or all of it may not apply to you or your child. It is an example of how a uBiome analysis can correlate with a condition and symptoms, directing some interventions. One recent patient case was a good example; the only large circles were Firmicutes, which is not such a bad thing. Opening that led to Clostridia being dominant, while Bacilli was minimal. This is meaningful because Bacilli includes Lactobacillus-one of the definite “good guys” that keep things working well. The phylum Actinobacteria was also minimal, significant because it includes another desirable genus, Bifidobacterium. This organism is an initial colonizer of the gut, tames the immune system, and also works with Lactobacillus to produce BDNF.

BDNF stands for Brain Derived Neurotrophic Factor, and it is necessary for the brain to develop new connections and grow/adapt to the life an individual leads. It is needed for plasticity, that ability of the brain to learn and adapt as needed. Low levels of BDNF are associated with ADHD. Your microbiome helps your brain to produce BDNF. Remember that a big part of what your brain learns to do as you grow up is actually blocking things out, not paying attention to more of them. It is a learning process, and in order to concentrate to accomplish tasks we must learn to attenuate non-essential information. This is also necessary for the brain to conserve fuel, because having a neural response to every incoming signal would burn a lot of fuel-in fact, enough to run out in some areas and cause Oxidative Stress.

Oxidative stress can result from depressed levels of antioxidant reserves or from too much stimulation. When nerve cells get overstimulated, they build up waste products and the energy-producing mitochondria become damaged. This is a “cellular death spiral”, because as soon as the mitochondria become damaged, the cell’s capability to metabolize fuel and produce energy is compromised, leading to more oxidative stress and further damage. This has been identified as part of the disease process in Alzheimer’s and Parkinson’s as well as ADHD and Autism. One of the problems that can promote Oxidative Stress is Inflammation.

Inflammation occurs when the immune system become too reactive and begins to attack tissue that is “self” and not “intruder/enemy”. Bifidobacteria are known for helping to dampen the immune inflammatory response, and a deficiency of Bifido contributes to inflammation. Again, inflammation is a key building block of…yes, all the same neurologic diseases. Low levels of Bifidobacteria and Lactobacillus are also significant because these organisms produce a neurotransmitter called Gamma Amino Butyric Acid or GABA.

GABA is an inhibitory neurotransmitter in the brain, and calming drugs or herbs often boost GABA levels. Valerian root or Valium (copycat drug companies, you know?) are good examples as is Kava Kava. Low levels of Lacto and Bifido gut bacteria result in low levels of GABA at the brain. Low levels of GABA at the brain result in less inhibition…ergo, more stimulation! And, the process continues in a positive feedback loop.

It is interesting to note that one intervention that helps elevate GABA and BDNF is exercise. Kids with ADHD are known for often being hyperkinetic, so if you wondered why, it is their brain’s way of balancing the equation to save nerve cells! When kids are reprimanded by teachers and parents are shamed into medicating their children’s “high energy”, it can be detrimental to the developmental process for this reason. This doesn’t mean that doing nothing is better, as a child must be able to focus in order to be able to learn. It just means that medicating their energy level down does not address the root causes of the problem.

So, what would be some natural interventions? First, improved nutrition. Any food that is causing more inflammation needs to be removed from the diet. Often that is sweets (note that Clostridia like sweets) and sometimes specific items such as gluten containing foods. Adding probiotics that contain the Lacto and Bifido organisms (in this patient example) can of course be helpful, but more so if they are also fed the prebiotic fibers that they need to survive (again, ideally this is case-specific). Both can be added to a fruit and vegetable smoothie that is tasty. Neuroprotective supplements such as N-Acetylcysteine will help to minimize the neuronal damage that is occurring. Also DHA/Omega-3 oils are neuroprotective and have been shown to help with ADHD. Curcumin can also reduce the neuroinflammation and is protective as well. It can also help settle gut function and heal the membranes of the intestines if they were inflamed too. Eating less processed food and more fresh (organic as possible) fruits and vegetables helps.

All of these steps are best carried out after having a stool sample analyzed for gut bacteria. Only after seeing the “bacterial census” is it possible to be extremely specific. A different patient’s samples could result in different recommendations! Please contact me for more details should you wish to find out more or schedule an analysis. This does not have to be done locally, as I only need the data from uBiome and a patient questionnaire to determine recommendations. Some of the supplements recommended are not case-specific, such as NAC, DHA/Omega and Curcumin as these will help most types of situations as will a healthier diet. The probiotic formulation is ideally case-specific, as is the prebiotic fibers and these will preferentially feed some categories of organisms more than others.

With proper lab work and specific interventions, it is possible for many individuals with ADHD to control and manage their situation more effectively. For some, it will be more of a cure, with no medication needed. For others, it may mean less medication is needed or the medication works more effectively. It is important to realize that we are all different, and our situations are also different!

Sources for supplements: http://progressivelabs.com/   You’ll have to register to order from them, and it requires specifying who referred you. Please feel free to put my name on that line, and then you will be able to receive your supplements directly from the same manufacturer I use!

References:

Clipboard: 27

1.

TNF-alpha inhibition prevents cognitive decline and maintains hippocampal BDNF levels in the unpredictable chronic mild stress rat model of depression.

Şahin TD, Karson A, Balcı F, Yazır Y, Bayramgürler D, Utkan T.

Behav Brain Res. 2015 Jun 23;292:233-240. doi: 10.1016/j.bbr.2015.05.062. [Epub ahead of print]

PMID:
26112756
2.

Effect of dietary supplementation of Bacillus subtilis B10 on biochemical and molecular parameters in the serum and liver of high-fat diet-induced obese mice.

Lei K, Li YL, Wang Y, Wen J, Wu HZ, Yu DY, Li WF.

J Zhejiang Univ Sci B. 2015 Jun;16(6):487-95. doi: 10.1631/jzus.B1400342.

PMID:
26055910

Free PMC Article

3.

Enteric short-chain fatty acids: microbial messengers of metabolism, mitochondria, and mind: implications in autism spectrum disorders.

MacFabe DF.

Microb Ecol Health Dis. 2015 May 29;26:28177. doi: 10.3402/mehd.v26.28177. eCollection 2015.

PMID:
26031685

Free Article

4.

Clinical trials of N-acetylcysteine in psychiatry and neurology: A systematic review.

Deepmala, Slattery J, Kumar N, Delhey L, Berk M, Dean O, Spielholz C, Frye R.

Neurosci Biobehav Rev. 2015 Aug;55:294-321. doi: 10.1016/j.neubiorev.2015.04.015. Epub 2015 May 6. Review.

PMID:
25957927
5.

Gastrointestinal dysfunction in autism spectrum disorder: the role of the mitochondria and the enteric microbiome.

Frye RE, Rose S, Slattery J, MacFabe DF.

Microb Ecol Health Dis. 2015 May 7;26:27458. doi: 10.3402/mehd.v26.27458. eCollection 2015.

PMID:
25956238

Free PMC Article

6.

Comparing interval and continuous exercise training regimens on neurotrophic factors in rat brain.

Afzalpour ME, Chadorneshin HT, Foadoddini M, Eivari HA.

Physiol Behav. 2015 Aug 1;147:78-83. doi: 10.1016/j.physbeh.2015.04.012. Epub 2015 Apr 11.

PMID:
25868740
7.

Probiotics as potential antioxidants: a systematic review.

Mishra V, Shah C, Mokashe N, Chavan R, Yadav H, Prajapati J.

J Agric Food Chem. 2015 Apr 15;63(14):3615-26. doi: 10.1021/jf506326t. Epub 2015 Apr 6.

PMID:
25808285
8.

A possible link between early probiotic intervention and the risk of neuropsychiatric disorders later in childhood: a randomized trial.

Pärtty A, Kalliomäki M, Wacklin P, Salminen S, Isolauri E.

Pediatr Res. 2015 Jun;77(6):823-8. doi: 10.1038/pr.2015.51. Epub 2015 Mar 11.

PMID:
25760553
9.

Increased levels of plasma glial-derived neurotrophic factor in children with attention deficit hyperactivity disorder.

Shim SH, Hwangbo Y, Yoon HJ, Kwon YJ, Lee HY, Hwang JA, Kim YK.

Nord J Psychiatry. 2015 Mar 9:1-6. [Epub ahead of print]

PMID:
25753832
10.

Evaluation of improved γ-aminobutyric acid production in yogurt using Lactobacillus plantarum NDC75017.

Shan Y, Man CX, Han X, Li L, Guo Y, Deng Y, Li T, Zhang LW, Jiang YJ.

J Dairy Sci. 2015 Apr;98(4):2138-49. doi: 10.3168/jds.2014-8698. Epub 2015 Jan 23.

PMID:
25622870
11.

The role of the brain-derived neurotrophic factor genotype and parenting in early life in predicting externalizing and internalizing symptoms in children with attention-deficit hyperactivity disorder.

Park S, Kim BN, Kim JW, Jung YK, Lee J, Shin MS, Yoo HJ, Cho SC.

Behav Brain Funct. 2014 Nov 25;10:43. doi: 10.1186/1744-9081-10-43.

PMID:
25425456

Free PMC Article

12.

Gut microbes and the brain: paradigm shift in neuroscience.

Mayer EA, Knight R, Mazmanian SK, Cryan JF, Tillisch K.

J Neurosci. 2014 Nov 12;34(46):15490-6. doi: 10.1523/JNEUROSCI.3299-14.2014. Review.

PMID:
25392516

Free PMC Article

13.

The Physiology of BDNF and Its Relationship with ADHD.

Liu DY, Shen XM, Yuan FF, Guo OY, Zhong Y, Chen JG, Zhu LQ, Wu J.

Mol Neurobiol. 2014 Oct 30. [Epub ahead of print]

PMID:
25354496
14.

Excitatory GABA induces BDNF transcription via CRTC1 and phosphorylated CREB-related pathways in immature cortical cells.

Fukuchi M, Kirikoshi Y, Mori A, Eda R, Ihara D, Takasaki I, Tabuchi A, Tsuda M.

J Neurochem. 2014 Jun 26. doi: 10.1111/jnc.12801. [Epub ahead of print]

PMID:
24965890
15.

The effects of gut microbiota on CNS function in humans.

Tillisch K.

Gut Microbes. 2014 May-Jun;5(3):404-10. doi: 10.4161/gmic.29232. Epub 2014 May 16. Review.

PMID:
24838095

Free PMC Article

16.

Prevention of cerebral palsy, autism spectrum disorder, and attention deficit-hyperactivity disorder.

Strickland AD.

Med Hypotheses. 2014 May;82(5):522-8. doi: 10.1016/j.mehy.2014.02.003. Epub 2014 Feb 12.

PMID:
24581674
17.

ROS and brain diseases: the good, the bad, and the ugly.

Popa-Wagner A, Mitran S, Sivanesan S, Chang E, Buga AM.

Oxid Med Cell Longev. 2013;2013:963520. doi: 10.1155/2013/963520. Epub 2013 Dec 5. Review.

PMID:
24381719

Free PMC Article

18.

The role of microbiome in central nervous system disorders.

Wang Y, Kasper LH.

Brain Behav Immun. 2014 May;38:1-12. doi: 10.1016/j.bbi.2013.12.015. Epub 2013 Dec 25. Review.

PMID:
24370461

Free PMC Article

19.

BDNF mediates adaptive brain and body responses to energetic challenges.

Marosi K, Mattson MP.

Trends Endocrinol Metab. 2014 Feb;25(2):89-98. doi: 10.1016/j.tem.2013.10.006. Epub 2013 Dec 19. Review.

PMID:
24361004

Free PMC Article

Select item 2423216820.

Oxidative Stress and ADHD: A Meta-Analysis.

Joseph N, Zhang-James Y, Perl A, Faraone SV.

J Atten Disord. 2013 Nov 14. [Epub ahead of print]

PMID:
24232168
21.

Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-D-aspartate receptor subunits and D-serine.

Savignac HM, Corona G, Mills H, Chen L, Spencer JP, Tzortzis G, Burnet PW.

Neurochem Int. 2013 Dec;63(8):756-64. doi: 10.1016/j.neuint.2013.10.006. Epub 2013 Oct 16.

PMID:
24140431

Free PMC Article

22.

Exercise ameliorates cognition impairment due to restraint stress-induced oxidative insult and reduced BDNF level.

Kwon DH, Kim BS, Chang H, Kim YI, Jo SA, Leem YH.

Biochem Biophys Res Commun. 2013 May 3;434(2):245-51. doi: 10.1016/j.bbrc.2013.02.111. Epub 2013 Mar 25.

PMID:
23535373
23.

Attention deficit and hyperactivity disorder scores are elevated and respond to N-acetylcysteine treatment in patients with systemic lupus erythematosus.

Garcia RJ, Francis L, Dawood M, Lai ZW, Faraone SV, Perl A.

Arthritis Rheum. 2013 May;65(5):1313-8. doi: 10.1002/art.37893.

PMID:
23400548

Free PMC Article

24.

Effect of n-3 supplementation on hyperactivity, oxidative stress and inflammatory mediators in children with attention-deficit-hyperactivity disorder.

Hariri M, Djazayery A, Djalali M, Saedisomeolia A, Rahimi A, Abdolahian E.

Malays J Nutr. 2012 Dec;18(3):329-35.

PMID:
24568073
25.

Psychiatric disorders and mitochondrial dysfunctions.

Marazziti D, Baroni S, Picchetti M, Landi P, Silvestri S, Vatteroni E, Catena Dell’Osso M.

Eur Rev Med Pharmacol Sci. 2012 Feb;16(2):270-5. Review.

PMID:
22428481
26.

Chronic treadmill running in normotensive rats resets the resting blood pressure to lower levels by upregulating the hypothalamic GABAergic system.

Hsu YC, Chen HI, Kuo YM, Yu L, Huang TY, Chen SJ, Chuang JI, Wu FS, Jen CJ.

J Hypertens. 2011 Dec;29(12):2339-48. doi: 10.1097/HJH.0b013e32834c628f.

PMID:
22002337

Oxidative stress in psychiatric disorders: evidence base and therapeutic implications.

Ng F, Berk M, Dean O, Bush AI.

Int J Neuropsychopharmacol. 2008 Sep;11(6):851-76. doi: 10.1017/S1461145707008401. Epub 2008 Jan 21. Review.

PMID:
18205981